Identification and characterization of NYGGF4, a novel gene containing a phosphotyrosine-binding (PTB) domain that stimulates 3T3-L1 preadipocytes proliferation.
نویسندگان
چکیده
A novel gene named NYGGF4, which was expressed at a higher level in obese subjects, was isolated and characterized. It is a 1527-bp cDNA, containing 753 nucleotides of an ORF (open reading frame) predicting 250 amino acids with a molecular mass of 28.27 kDa. Amino acid sequence analysis revealed NYGGF4 has a phosphotyrosine-binding (PTB) domain. Northern blot analysis revealed NYGGF4 is expressed primarily in adipose tissue, heart, and skeletal muscle but not in any other tissue examined. Confocal imagery analyses with green fluorescent protein-tagged protein transiently expressed in 3T3-L1 preadipocytes and 293-T cells show that NYGGF4 localizes in the cytoplasm. Furthermore, ectopic expression of NYGGF4 dramatically increases the proliferation of 3T3-L1 peadipocytes without affecting adipocytic differentiation. And the NYGGF4 expression 3T3-L1 cells had a greater number of cells in S-phase. Our data suggest that NYGGF4 might be a signaling molecule and could play a role in cell growth and adipogenesis process.
منابع مشابه
The mammalian numb phosphotyrosine-binding domain. Characterization of binding specificity and identification of a novel PDZ domain-containing numb binding protein, LNX.
Numb is a phosphotyrosine-binding (PTB) domain-containing protein implicated in the control of cell fate decisions during development. A modified two-hybrid screen in yeast was used to identify Numb PTB domain-interacting proteins important for Numb function. Here we report the identification of a novel protein, LNX, which interacts specifically with the Numb PTB domain. Two differentially expr...
متن کاملOrphan nuclear receptor TR2, a mediator of preadipocyte proliferation, is differentially regulated by RA through exchange of coactivator PCAF with corepressor RIP140 on a platform molecule GRIP1
Orphan nuclear receptor TR2 is a preadipocyte proliferator. Knockdown of TR2 in 3T3-L1 preadipocytes reduced their proliferation efficiency, whereas specific elevation of TR2 in these cells facilitated their proliferation. All-trans retinoic acid (RA) stimulates cellular proliferation in 3T3-L1 preadipocytes by activating TR2 through an IR0-type RA response element, which further activates c-My...
متن کاملLOC66273 isoform 2, a novel protein highly expressed in white adipose tissue, induces adipogenesis in 3T3-L1 cells.
Obesity results in part from altered adipocyte metabolism and enhanced adipogenesis. However, the factors that influence insulin-independent differentiation of preadipocytes in response to excess intake of dietary energy remain poorly understood. Based on our recent finding that LOC66273 isoform 2 (LI2), a gene that encodes a novel Mth938 domain-containing protein, is highly expressed in white ...
متن کاملTSH signaling and cell survival in 3T3-L1 preadipocytes.
Thyroid-stimulating hormone (TSH) action in adipose tissue remains largely unknown. Our previous work indicates that human preadipocytes express functional TSH receptor (TSHR) protein, demonstrated by TSH activation of p70 S6 kinase (p70 S6K). We have now studied murine 3T3-L1 preadipocytes to further characterize TSH signaling and cellular action. Western blot analysis of 3T3-L1 preadipocyte l...
متن کاملIdentification of phosphotyrosine binding domain-containing proteins as novel downstream targets of the EphA8 signaling function.
Eph receptors and ephrins have been implicated in a variety of cellular processes, including morphology and motility, because of their ability to modulate intricate signaling networks. Here we show that the phosphotyrosine binding (PTB) domain-containing proteins AIDA-1b and Odin are tightly associated with the EphA8 receptor in response to ligand stimulation. Both AIDA-1b and Odin belong to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 379 شماره
صفحات -
تاریخ انتشار 2006